Что значит среднее арифметическое

Как правильно вычислить среднее значение?

Средняя зарплата… Средняя продолжительность жизни… Практически каждый день мы с вами слышим эти словосочетания, используемые для описания множества одним единственным числом. Но как ни странно, «среднее значение» — достаточно коварное понятие, часто вводящее в заблуждение обычного, неискушенного в математической статистике, человека.

В чем проблема?

Под средним значением чаще всего подразумевается среднее арифметическое, которое очень сильно варьируется под воздействием единичных фактов или событий. И вы не получите реального представления о том, как именно распределены значения, которые вы изучаете.

Давайте обратимся к классическому примеру со средней зарплатой.

В какой-то абстрактной компании работает десять сотрудников. Девять из них получают зарплату около 50 000 рублей, а один 1 500 000 рублей (по странному совпадению он же является генеральным директором этой компании).

Средним значением в данном случае будет 195 150 рублей, что согласитесь, неправильно.

Какие способы вычисления среднего бывают?

Первым способом является вычисление уже упомянутого среднего арифметического, являющегося суммой всех значений, деленной на их количество.

  • x – среднее арифметическое;
  • xn – конкретное значение;
  • n – количество значений .
  • Хорошо работает при нормальном распределении значений в выборке;
  • Легко вычислить;
  • Интуитивно понятно.
  • Не дает реального представления о распределении значений;
  • Неустойчивая величина легко поддающаяся выбросам (как в случае с генеральным директором).

Вторым способом является вычисление моды, то есть наиболее часто встречающегося значения.

  • M – мода;
  • x – нижняя граница интервала, который содержит моду;
  • n – величина интервала;
  • fm– частота (сколько раз в ряду встречается то или иное значение);
  • fm-1 – частота интервала предшествующего модальному;
  • fm+1 – частота интервала следующего за модальным.
  • Прекрасно подходит для получения представления об общественном мнении;
  • Хорошо подходит для нечисловых данных (цвета сезона, хиты продаж, рейтинги);
  • Проста для понимания.
  • Моды может просто не быть (нет повторов);
  • Мод может быть несколько (многомодальное распределение).

Третий способ — это вычисление медианы, то есть значения, которое делит упорядоченную выборку на две половины и находится между ними. А если такого значения нет, то за медиану принимается среднее арифметическое между границами половин выборки.

  • Me – медиана;
  • x – нижняя граница интервала, который содержит медиану;
  • h – величина интервала;
  • f i – частота (сколько раз в ряду встречается то или иное значение);
  • Sm-1 – сумма частот интервалов предшествующих медианному;
  • fm – число значений в медианном интервале (его частота).
  • Дает самую реалистичную и репрезентативную оценку;
  • Устойчива к выбросам.
  • Сложнее вычислить, так как перед вычислением выборку нужно упорядочить.

Мы рассмотрели основные методы нахождения среднего значения, называющиеся мерами центральной тенденции (на самом деле их больше, но это наиболее популярные).

А теперь давайте вернемся к нашему примеру и посчитаем все три варианта среднего при помощи специальных функций Excel:

  • СРЗНАЧ(число1;[число2];…) — функция для определения среднего арифметического;
  • МОДА.ОДН(число1;[число2];. ) — функция моды (в более старых версиях Excel использовалась МОДА(число1;[число2];. ) );
  • МЕДИАНА(число1;[число2];. ) — функция для поиска медианы.

И вот какие значения у нас получились:

В данном случае мода и медиана гораздо лучше характеризуют среднюю зарплату в компании.

Но что делать, когда в выборке не 10 значений, как в примере, а миллионы? В Excel это не посчитать, а вот в базе данных где хранятся ваши данные, без проблем.

Вычисляем среднее арифметическое на SQL

Тут все достаточно просто, так как в SQL предусмотрена специальная агрегатная функция AVG .

И чтобы ее использовать достаточно написать вот такой запрос:

Вычисляем моду на SQL

В SQL нет отдельной функции для нахождения моды, но ее легко и быстро можно написать самостоятельно. Для этого нам необходимо узнать, какая из зарплат чаще всего повторяется и выбрать наиболее популярную.

Вычисляем медиану на SQL

Как и в случае с модой, в SQL нет встроенной функции для вычисления медианы, зато есть универсальная функция для вычисления процентилей PERCENTILE_CONT .

Выглядит все это так:

Подробнее о работе функции PERCENTILE_CONT лучше почитать в справке Microsoft и Google BigQuery.

Какой способ все-таки использовать?

Из сказанного выше следует, что медиана лучший способ для вычисления среднего значения.

Но это не всегда так. Если вы работаете со средним, то остерегайтесь многомодального распределения:

На графике представлено бимодальное распределение с двумя пиками. Такая ситуация может возникнуть, например, при голосовании на выборах.

В данном случае среднее арифметическое и медиана — это значения, находящиеся где-то посередине и они ничего не скажут о том, что происходит на самом деле и лучше сразу признать, что вы имеете дело с бимодальным распределением, сообщив о двух модах.

А еще лучше разделить выборку на две группы и собрать статистические данные для каждой.

При выборе метода нахождения среднего нужно учитывать наличие выбросов, а также нормальность распределения значений в выборке.

Окончательный выбор меры центральной тенденции всегда лежит на аналитике.

Среднее арифметическое

В математике и статистике сре́днее арифмети́ческое — одна из наиболее распространённых мер центральной тенденции, представляющая собой сумму всех наблюденных значений деленную на их количество.

Предложена (наряду со средним геометрическим и средним гармоническим) еще пифагорейцами [1] и является одной из наиболее распространенных мер центральной тенденции.

Частными случаями среднего арифметического являются генеральное среднее ( генеральной совокупности) и выборочное среднее ( выборки).

Содержание

Обозначим множество данных X = (x1, x2, …, xn), тогда выборочное среднее обычно обозначается горизонтальной чертой над переменной (, произносится «x с чертой»).

Для обозначения среднего арифметического всей совокупности используется греческая буква μ. Для случайной величины, для которой определено среднее значение, μ есть вероятностное среднее или математическое ожидание случайной величины. Если множество X является совокупностью случайных чисел с вероятностным средним μ, тогда для любой выборки xi из этой совокупности μ = E<xi> есть математическое ожидание этой выборки.

На практике разница между μ и в том, что μ является типичной ненаблюдаемой переменной, потому что видеть можно скорее выборку, а не всю генеральную совокупность. Поэтому, если выборку представлять случайным образом (в терминах теории вероятностей), тогда (но не μ) можно трактовать как случайную переменную, имеющую распределение вероятностей на выборке (вероятностное распределение среднего).

Обе эти величины вычисляются одним и тем же способом:

Если X — случайная переменная, тогда математическое ожидание X можно рассматривать как среднее арифметическое значений в повторяющихся измерениях величины X. Это является проявлением закона больших чисел. Поэтому выборочное среднее используется для оценки неизвестного математического ожидания.

В элементарной алгебре доказано, что среднее n + 1 чисел больше среднего n чисел тогда и только тогда, когда новое число больше чем старое среднее, меньше тогда и только тогда, когда новое число меньше среднего, и не меняется тогда и только тогда, когда новое число равно среднему. Чем больше n, тем меньше различие между новым и старым средними значениями.

Читать еще:  Как сделать шаблон в сбербанк онлайн

Заметим, что имеется несколько других «средних» значений, в том числе среднее степенное, среднее Колмогорова, гармоническое среднее, арифметико-геометрическое среднее и различные средне-взвешенные величины.

  • Для трёх чисел сложим их и поделим на 3:

  • Для четырёх чисел сложим их и поделим на 4:

Непрерывная случайная величина

Для непрерывно распределённой величины среднее арифметическое на отрезке определяется через определённый интеграл:

Некоторые проблемы применения среднего

Отсутствие робастности

Хотя среднее арифметическое часто используется в качестве средних значений или центральных тенденций, это понятие не относится к робастной статистике, что означает, что среднее арифметическое подвержено сильному влиянию «больших отклонений». Примечательно, что для распределений с большим коэффициентом асимметрии среднее арифметическое может не соответствовать понятию «среднего», а значения среднего из робастной статистики (например, медиана) может лучше описывать центральную тенденцию.

Классическим примером является подсчёт среднего дохода. Арифметическое среднее может быть неправильно истолковано в качестве медианы, из-за чего может быть сделан вывод, что людей с большим доходом больше, чем на самом деле. «Средний» доход истолковывается таким образом, что доходы большинства людей находятся вблизи этого числа. Этот «средний» (в смысле среднего арифметического) доход является выше, чем доходы большинства людей, так как высокий доход с большим отклонением от среднего делает сильный перекос среднего арифметического (в отличие от этого, средний доход по медиане «сопротивляется» такому перекосу). Однако, этот «средний» доход ничего не говорит о количестве людей вблизи медианного дохода (и не говорит ничего о количестве людей вблизи модального дохода). Тем не менее, если легкомысленно отнестись к понятиям «среднего» и «большинство народа», то можно сделать неверный вывод о том, что большинство людей имеют доходы выше, чем они есть на самом деле. Например, отчёт о «среднем» чистом доходе в Медине, штат Вашингтон, подсчитанный как среднее арифметическое всех ежегодных чистых доходов жителей, даст на удивление большое число из-за Билла Гейтса. Рассмотрим выборку (1, 2, 2, 2, 3, 9). Среднее арифметическое равно 3.17, но пять значений из шести ниже этого среднего.

Сложный процент

Если числа перемножать, а не складывать, нужно использовать среднее геометрическое, а не среднее арифметическое. Наиболее часто этот казус случается при расчёте окупаемости инвестиций в финансах.

Например, если акции в первый год упали на 10 %, а во второй год выросли на 30 %, тогда некорректно вычислять «среднее» увеличение за эти два года как среднее арифметическое (−10 % + 30 %) / 2 = 10 %; правильное среднее значение в этом случае дают совокупные ежегодные темпы роста, по которым годовой рост получается только 8,2 %.

Причина этого в том, что проценты имеют каждый раз новую стартовую точку: 30 % — это 30 % от меньшего числа. Если акции в начале стоили $30 и упали на 10 %, они теперь стоят $27. Если акции выросли на 30 %, они теперь стоят $35.1. Арифметическое среднее этого роста 10 %, но поскольку акции выросли за 2 года на $5.1, средний рост в 8,2 % даёт конечный результат $35.1 [$30 (1 — 10 %) (1 + 30 %) = $30 (1 + 8,2 %) (1 + 8,2 %) = $35.1]. Если же использовать таким же образом среднее арифметическое значение 10 %, мы не получим фактическое увеличение [$30 (1 + 10 %) (1 + 10 %) = $36.3].

В общем, сложный процент даёт 90 % * 130 % = 117 % общий рост, а годовой прирост , то есть 8,2 % в год.

Направления

Особую осторожность нужно иметь при расчёте циклических данных, таких как фазы или углы. Наивное вычисление среднего арифметического 1° и 359° даёт результат 180°. Это неверно по двум причинам:

  • Во-первых, угловые меры определены только до 360° (или 2π, при измерении в радианах). Таким образом, ту же пару можно записать 1° и −1°, или 1° и 719°, но каждая из которых даёт различные средние значения.
  • Во-вторых, в этой ситуации, 0° (эквивалентно 360°) геометрически лучшее среднее значение: меньше дисперсия (обе точки на 1° от него, и на 179° от 180°, вычисленного среднего).

В целом применение такого рассмотрения средней величины ведёт к искусственному сдвигу его к середине числового диапазона. Решение этой проблемы заключается в использовании оптимальной формализации (а именно, определение среднего в качестве центральной точки, то есть точки, от которой наименьшая дисперсия), а также переопределение вычитания как модульного расстояния (то есть как расстояние от окружности; в частности, модульное расстояние между 1° и 359° — это 2°, а не 358°).

Что такое среднее арифметическое чисел

Средне-арифметическое – что это значит?

Не только в различных математических науках, но и в повседневной жизни возникают случаи, когда нужно рассчитать средний показатель чего-либо. Например, среднюю стоимость огурцов на рынке, средний рост ребенка, среднюю стоимость проживания в гостинице и пр.

Всему этому уже давно было придумано научное название – «среднее арифметическое». Данный показатель активно применяется в статистике для обобщения результатов. К примеру, средний возраст для рождения детей, средний возраст смерти среди мужчин и женщин, средняя заработная плата по регионам и по России в целом.

К примеру, при принятии закона о повышении пенсионного возраста, власти как раз исходили из среднего возраста смерти в нашей стране.

Разберемся, что же представляет собой данный показатель.

Среднее арифметическое – это усредненный показатель всех имеющихся значений. Для его расчета необходимо суммировать все участвующие в операции числа, после чего разделить на их общее количество.

К примеру, в 2017 году полное среднее образование получили дети разных возрастов : 16, 17 и 18 лет. Среднее арифметическое будет рассчитано, как сумма всех возрастов, деленная на три. Итого средний возраст ребёнка, окончившего 11 класс, составил 17 лет.

В данном примере показан примитивный расчет на примере трех детей. По факту суммировать нужно все данные, имеющиеся в наличии. То есть если речь будет идти о пяти детях, то мы суммируем их возраст, к примеру, 17+17+18+16+17 и делим полученное на пять.

Аналогично производится расчет любого среднего арифметического для какой-либо операции. То есть, если, например, нужно подсчитать средний возраст матерей, родивших первого ребенка в 2017 году, то сначала нужно будет суммировать все показатели возраста, после чего поделить на общее число родительниц.

То есть в общем виде формулу можно представить так:

Среднее арифметическое = (сумма всех имеющихся значений)/общее число значений, что участвуют в операции.

Таким образом, расчет довольно прост, даже для школьников. Затруднения могут возникнуть лишь по причине большого количества респондентов, участвующих в операции.

Важно понимать, что средний показатель не является просто числом. Он имеет особый физический смысл, который уже долгие годы применяется в реальном мире на практике.

Неправильным было бы использование среднего арифметического лишь на бумаге, в тетради или в компьютерных программах. В противном случае, можно получить множество бессмысленных и просто нереальных значений.

Средних, на самом деле, существует несколько. Однако в каждом случае, только одно из них верное. В каждой из операций, нужно использовать только тот вид среднего, который необходим, иначе будет допущена огромная ошибка.

Читать еще:  Сбербанк как увеличить лимит кредитной карты

Какие виды средних используются на практике? Самые распространенные средние – это:

  1. Среднее арифметическое;
  2. Среднее геометрическое;
  3. Среднее гармоническое.

Эти значения наиболее часто используются, как в повседневной жизни, так и в науках. Наиболее часто, конечно же, рассчитывается первый показатель.

Зачастую данный показатель в реальных условиях применяется и рассчитывается неверно. Почему так происходит? Фактически, базой среднего арифметического выступает применение закона о больших числах. Кроме того, применяется и допущение, согласно которому исходная величина является нормально определенной.

Это означает, что вокруг представленного в ряде значений, имеется наиболее частое отклонение в какую-либо сторону. То есть. В большую или меньшую. Например, в ряду чисел 8,8,9,8,9,8,8, отклонение будет в меньшую сторону, так как больше восьмерок. А в ряде: 17,17, 20,20,20,20,20, отклонение, наоборот, будет в большую сторону, так как в этом случае больше все же «двадцаток».

Однако в большинстве случаев, такие отклонения являются небольшими и обычно равными по вероятности. Суть проблемы в том, что в бизнесе, как и в реальной жизни, нормальность распределения на практике можно встретить крайне редко.

То есть, к примеру, время обслуживания одного клиента, время, которое клиенту ожидают этого обслуживания, сумма, на которую они потом заключат контракт, рыночная доля, прирост доходов и прочее, являются теми показателями, что не распределяются равномерно и нормально. Их усреднять в некоторых случаях нежелательно именно при помощи среднего арифметического. Потому что это было бы неправильно.

На практике нормальность распределения часто можно встретить при наличии большого количества значений, начиная с сотен и тысяч. К примеру, количество обращений в техническую поддержку крупной компании может быть распределено нормально, как на бумаге, так и фактически.

Тем не менее, только лишь количества не будет достаточно, ведь в каждой конкретной ситуации нужно следить и за правильностью распределения. Только так можно будет правильно в итоге рассчитать значение среднего арифметического.

Среднее арифметическое в Excel

Среднее арифметическое значение — самый известный статистический показатель. В этой заметке рассмотрим его смысл, формулы расчета и свойства.

Средняя арифметическая как оценка математического ожидания

Теория вероятностей занимается изучением случайных величин. Для этого строятся различные характеристики, описывающие их поведение. Одной из основных характеристик случайной величины является математическое ожидание, являющееся своего рода центром, вокруг которого группируются остальные значения.

Формула матожидания имеет следующий вид:

где M(X) – математическое ожидание

xi – это случайные величины

То есть, математическое ожидание случайной величины — это взвешенная сумма значений случайной величины, где веса равны соответствующим вероятностям.

Математическое ожидание суммы выпавших очков при бросании двух игральных костей равно 7. Это легко подсчитать, зная вероятности. А как рассчитать матожидание, если вероятности не известны? Есть только результат наблюдений. В дело вступает статистика, которая позволяет получить приблизительное значение матожидания по фактическим данным наблюдений.

Математическая статистика предоставляет несколько вариантов оценки математического ожидания. Основное среди них – среднее арифметическое.

Среднее арифметическое значение рассчитывается по формуле, которая известна любому школьнику.

где xi – значения переменной,
n – количество значений.

Среднее арифметическое – это соотношение суммы значений некоторого показателя с количеством таких значений (наблюдений).

Свойства средней арифметической (математического ожидания)

Теперь рассмотрим свойства средней арифметической, которые часто используются при алгебраических манипуляциях. Правильней будет вновь вернутся к термину математического ожидания, т.к. именно его свойства приводят в учебниках.

Матожидание в русскоязычной литературе обычно обозначают как M(X), в иностранных учебниках можно увидеть E(X). Встречается обозначение греческой буквой μ (читается «мю»). Для удобства предлагаю вариант M(X).

Итак, свойство 1. Если имеются переменные X, Y, Z, то математическое ожидание их суммы равно сумме их математических ожиданий.

M(X+Y+Z) = M(X) + M(Y) + M(Z)

Допустим, среднее время, затрачиваемое на мойку автомобиля M(X) равно 20 минут, а на подкачку колес M(Y) – 5 минут. Тогда общее среднее арифметическое время на мойку и подкачку составит M(X+Y) = M(X) + M(Y) = 20 + 5 = 25 минут.

Свойство 2. Если переменную (т.е. каждое значение переменной) умножить на постоянную величину (a), то математическое ожидание такой величины равно произведению матожидания переменной и этой константы.

К примеру, среднее время мойки одной машины M(X) 20 минут. Тогда среднее время мойки двух машин составит M(aX) = aM(X) = 2*20 = 40 минут.

Свойство 3. Математическое ожидание постоянной величины (а) есть сама эта величина (а).

Если установленная стоимость мойки легкового автомобиля равна 100 рублей, то средняя стоимость мойки нескольких автомобилей также равна 100 рублей.

Свойство 4. Математическое ожидание произведения независимых случайных величин равно произведению их математических ожиданий.

Автомойка за день в среднем обслуживает 50 автомобилей (X). Средний чек – 100 рублей (Y). Тогда средняя выручка автомойки в день M(XY) равна произведению среднего количества M(X) на средний тариф M(Y), т.е. 50*100 = 500 рублей.

Формула среднего значения в Excel

Среднее арифметическое чисел в Excel рассчитывают с помощью функции СРЗНАЧ. Выглядит примерно так.

У этой формулы есть замечательное свойство. Если в диапазоне, по которому рассчитывается формула, присутствуют пустые ячейки (не нулевые, а именно пустые), то они исключается из расчета.

Вызвать функцию можно разными способами. Например, воспользоваться командой автосуммы во вкладке Главная:

После вызова формулы нужно указать диапазон данных, по которому рассчитывается среднее значение.

Есть и стандартный способ для всех функций. Нужно нажать на кнопку fx в начале строки формул. Затем либо с помощью поиска, либо просто по списку выбрать функцию СРЗНАЧ (в категории «Статистические»).

Средняя арифметическая взвешенная

Рассмотрим следующую простую задачу. Между пунктами А и Б расстояние S, которые автомобиль проехал со скоростью 50 км/ч. В обратную сторону – со скоростью 100 км/ч.

Какова была средняя скорость движения из А в Б и обратно? Большинство людей ответят 75 км/ч (среднее из 50 и 100) и это неправильный ответ. Средняя скорость – это все пройденное расстояние, деленное на все потраченное время. В нашем случае все расстояние – это S + S = 2*S (туда и обратно), все время складывается из времени из А в Б и из Б в А. Зная скорость и расстояние, время найти элементарно. Исходная формула для нахождения средней скорости имеет вид:

Теперь преобразуем формулу до удобного вида.

Правильный ответ: средняя скорость автомобиля составила 66,7 км/ч.

Средняя скорость – это на самом деле среднее расстояние в единицу времени. Поэтому для расчета средней скорости (среднего расстояния в единицу времени) используется средняя арифметическая взвешенная по следующей формуле.

где x – анализируемый показатель; f – вес.

Аналогичным образом по формуле средневзвешенной средней рассчитывается средняя цена (средняя стоимость на единицу продукции), средний процент и т.д. То есть если средняя считается по другим усредненным значениям, нужно применить среднюю взвешенную, а не простую.

Формула средневзвешенного значение в Excel

Обычная функция среднего значения в Excel СРЗНАЧ, к сожалению, считает только среднюю простую. Готовой формулы для среднего взвешенного значения в Excel нет. Однако расчет несложно сделать подручными средствами.

Самый понятный вариант создать дополнительный столбец. Выглядит примерно так.

Имеется возможность сократить количество расчетов. Есть функция СУММПРОИЗВ. С ее помощью можно рассчитать числитель одним действием. Разделить на сумму весов можно в этой же ячейке. Вся формула для расчета среднего взвешенного значения в Excel выглядит так:

Читать еще:  Каким должен быть кошелек

Интерпретация средней взвешенной такая же, как и у средней простой. Средняя простая – это частный случай взвешенной, когда все веса равны 1.

Физический смысл средней арифметической

Представим, что имеется спица, на которой в разных местах нанизаны грузики различной массы.

Как отыскать центр тяжести? Центр тяжести – это такая точка, за которую можно ухватиться, и спица при этом останется в горизонтальном положении и не будет переворачиваться под действием силы тяжести. Она должна быть в центре всех масс, чтобы силы слева равнялись силам справа. Для нахождения точки равновесия следует рассчитать среднее арифметическое взвешенное расстояний от начала спицы до каждого грузика. Весами будут являться массы грузиков (mi), что в прямом смысле слова соответствует понятию веса. Таким образом, среднее арифметическое расстояние – это центр равновесия системы, когда силы с одной стороны точки уравновешивают силы с другой стороны.

И последнее. В русском языке так сложилось, что под словом «средний» обычно понимают именно среднее арифметическое. То есть моду и медиану как-то не принято называть средним значением. А вот на английском языке слово «средний» (average) может трактоваться и как среднее арифметическое (mean), и как мода (mode), и как медиана (median). Так что при чтении иностранной литературы следует быть бдительным.

Правильное среднее

Я уже много раз говорил о том, что усреднение — опасная штука. Когда цифр много, то так и хочется упростить реальность и сказать: а в среднем все так и этак. Казалось бы, ну что уж тут сложного: это плюс то делим на сё — вот тебе и среднее. И в большинстве случаев именно здесь и начинаются грубые, но совсем незаметные ошибки.
Как же нужно правильно считать среднее?

Начнем с главного: среднее — это не просто число. Это число со смыслом. Причем со вполне конкретным физическим смыслом, который мы можем (и должны) ощущать в реальном мире. Нельзя оперировать только цифрами на бумаге или в компьютере, иначе можно получить бессмысленные и нереальные цифры.

Существует много видов средних, но в каждой ситуации только одно из них правильное. Только один вид среднего следует использовать в каждом конкретном случае, и ошибка может вам стоить очень дорого.

Среднее арифметическое
Самый простой и широко известный вид среднего значения: складываем все значения, делим на количество значений — и получаем среднее арифметическое.

Именно это среднее обычно используется для усреднения всего подряд. но используется обычно неправильно.

Дело в том, что в основе такого усреднения лежит закон больших чисел и допущение, что исходная величина распределена нормально. А это подразумевает, что возможные значения сконцентрированы вокруг некоторого наиболее частого значения, а отклонения и в большую, и в меньшую сторону относительно невелики и равновероятны.

Проблема в том, что в бизнесе нормальное распределение встречается довольно редко.

Длительность обслуживания, длина очередей, время ожидания, сумма контракта, размер перевода, остатки на счетах, доля рынка, процент прироста — все эти и многие другие бизнес-показатели распределены ненормально, и их, как правило, не стоит усреднять с помощью средего арифметического.
Нормальное распределение обычно встречается при большом числе значений — сотни и тысячи штук. Например, число обращений в крупный колл-центр может быть распределено нормально. Однако одного количества мало, и поэтому в каждом случае следует убедиться в нормальности распределения, чтобы без сомнений усреднять с помощью среднего арифметического.

В следующих записях я приведу интересные примеры неправильного усреднения, а сейчас перейдем к другим видам среднего.

Среднее гармоническое
Первые 100 км автомобиль проехал со скоростью 50 км/ч, а следующие 100 км — со скоростью 80 км/ч. С какой средней скоростью двигался автомобиль на всем пути?

Сначала, наверное, может показаться, что правильное значение 65 км/ч, потому что (50+80)/2 = 65.
Однако быстро становится понятно, что если бы другой автомобиль двигался со средней скоростью, то он провел бы в пути столько же времени, что и первый. Именно в этом смысл усреднения в данном случае.

И вот тут на помощь приходит среднее гармоническое:

Для нашей задачи искомое среднее равно 2/(1/50+1/80)=61.54 км/ч. И действительно в первом случае автомобиль затратил 2 часа на преодоление 100 км со скоростью 50 км/ч и еще 1.25 часа ему потребовалось на следующие 100 км, потому что скорость возросла до 80 км/ч. Таким образом, всего ушло 3.25 часа.
Если бы автомобиль все 200 км двигался со скоростью 61.54 км/ч, то у него также ушло бы на дорогу 3.25 часа.

Близость значений 65 и 61.54 не должна вас обманывать. Среднее гармоническое в данном случае не просто дает более точный результат. Это единственно правильный способ усреднения, потому что он соответствует физическому смыслу измеряемых явлений.
При других исходных данных разница между средним гармоническим и средним арифметическим могла бы быть больше. Но среднее арифметическое здесь не имеет никакого смысла. Для усреднения в подобных задачах допустимо использовать только среднее гармоническое.

Обычно задачи этого типа связаны со временем и производительностью: например, сотрудник А выполняет операцию за 10 минут, а сотрудник Б — за 25 минут; сколько в среднем им требуется времени на выполнение операции, если бы они работали вместе?
Правильный ответ: 14 мин 17 сек. А отличие от среднего арифметического (17 мин 30 сек) уже превышает 20%. Именно на столько вы бы ошиблись, если бы усредняли неправильно.

Среднее геометрическое
В 2009 году выручка выросла на 12% от уровня 2008 года, а в в 2010 — на 42% от уровня 2009. На сколько росла выручка в среднем за год?

Можно предположить, что есть несколько вариантов усреднения. Во-первых, среднее арифметическое: (12+42)/2 = 27%. Во-вторых, сложный процент: 1.12*1.42=1.5904, т.е. 59.04% за 2 года или 28.02% за год.

Но «в среднем» означает, что применив это значение к каждому году, мы получим тот же самый результат, что и при использовании множества исходных значений.

Проверяем. Среднее арифметическое: 1.27*1.27=1.6129 (на 61.29%). Сложный процент: 1.2802*1.2802=1.6389 (на 63.89%). Результаты мало того, что разные, так и оба неправильные, потому что выручка за 2 года выросла на 59.04%.

В данном случае есть только один осмысленный способ усреднения — это среднее геометрическое

Таким образом, для нашей задачи средний прирост за год составит 26.11% (проверка 1.2611*1.2611=1.5904)

Среднее геометрическое часто встречается в реальных бизнес-задачах вместе с процентами и долями. Если в вашей задаче что-то растет или падает и вы хотите усреднить динамику показателя, то вам следует применять среднее геометрическое.

Вместо заключения
Повторю главные моменты:
— среднее арифметическое далеко не всегда соответствует смыслу и физической сущности усредняемого показателя;
— существует много видов средних значений, но в каждом конкретном случае есть только один правильный вид среднего, и именно его следует использовать в расчетах.

Ссылка на основную публикацию
Adblock
detector